Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)
Cho tam giác ABC vuông tại A ( AB < AC ). Vẽ đường tròn tâm O đường kính BC
a. Xác định vị trí tương đối của điểm A với đường tròn (O)
b. Tiếp tuyến tại A và B của đường tròn O cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt AD tại E, cắt AC tại I. Xác định vị trí tương đối của EC với đường tròn O
c. CM rằng: EC2 = EA.ED - OI.OE
Cho tam giác ABC vuông tại A ( AB < AC ). Vẽ đường tròn tâm O đường kính BC
a. Xác định vị trí tương đối của điểm A với đường tròn (O)
b. Tiếp tuyến tại A và B của đường tròn O cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt AD tại E, cắt AC tại I. Xác định vị trí tương đối của EC với đường tròn O
c. CM rằng: EC2 = EA.ED - OI.OE
Cho điểm A nằm ngoài đường tròn (O). Quả A vẽ hai đường tiếp tuyến AB, AC với (O) (B,C là các tiếp điểm). a) Chứng minh các điểm A,B,C,O cùng thuộc một đường tròn, tìm tâm của đường tròn đó. b) Vẽ đường kính BE của (O), AE cắt (O) tại F (F khác E). Chứng minh OA vuông góc với BC tại M rồi từ đó suy ra OB²=OM.OA c) Gọi G là trung điểm của EF,OG cắt BC tại H. Chứng minh OM.OA=OG.OH d) Chứng minh EH là tiếp tuyến của đường tròn (O)
Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (O).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (O) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (O) cắt AB, BD lần lượt tại P. Q. Chứng minh: \(2\sqrt{PE.QF}=EF\)
cho nửa đường tròn tâm O đường kính AB
Ax là tiếp tuyến của đường tròn( O )dây AD khác đường kính qua O kẻ đường thẳng vuông góc với AC cắt Ax tại S . BC cắt Ax tại C
a Tính AC ? biết R = 6 cm góc ABC = 40°
b) Chứng minh SD là tiếp tuyến của (O)
c) BC cắt AS tại C. Chứng minh : BD.BC = 4R2
d) Chứng minh SA = SC
e) kẻ DH vuông góc với AB ; AH cắt BS tại E . CM : E là trung điểm của DH
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng