cho tam giác abc, AB=AC(góc A <90 độ) kẻ bh vuông góc với ac (H thuộc AC) CK vuông góc với AB (K thuộc AB) gọi I là giao điểm cuả BH và CK
a, Chứng minh tam giác BHC = tam giác CKB
b, Chứng minh IB=IC và góc IBK = góc ICH
c, Chứng minh KH // BC
d, cho BC=5cm,CH=3cm. tính chu vi và diện tích của tam giác AHB.
a: Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
BC chung
\(\widehat{BCH}=\widehat{CBK}\)
Do đó: ΔBHC=ΔCKB
b: Ta có: ΔBHC=ΔCKB
nên \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
=>IB=IC
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
Suy ra: \(\widehat{IBK}=\widehat{ICH}\)
c: Ta có: ΔABH=ΔACK
nên AK=AH
Xét ΔABC có AK/AB=AH/AC
nên KH//BC