Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông
góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm
A, O, I thẳng hàng
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOCB cân tại O
c: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
OB=OC
KB=HC
Do đó: ΔOBK=ΔOCH