Bài 6: Tam giác cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Maria Shinku

Cho tam giác ABC, AB < AC. Qua trung điểm D của cạnh BC vẽ đường thẳng vuông góc với tia phân giác của Â, cắt AB và AC theo thứ tự tại M và N.

a) Chứng minh: BM = CN.

b) Tính BM, AM theo AC = b, AB = c.

Ngô Tấn Đạt
28 tháng 12 2017 lúc 20:27

a)

Kẻ BF // AC ( F thuộc MN)

Gọi G là giao điểm Của MN và tia phân giác gócA

Xét \(\Delta AGM;\Delta AGN\) có :

\(\widehat{GAM}=\widehat{GAN}\left(gt\right)\\ AG\left(chung\right)\\ \widehat{AGM}=\widehat{AGN}\left(=90^0\right)\\ \Rightarrow\Delta AGM=\Delta AGN\left(g-c-g\right)\\ \Rightarrow\widehat{AMN}=\widehat{ANM}\)

Ta có : BF // AC => góc BFM = góc ANM (đồng vị)

\(\Rightarrow\widehat{BMF}=\widehat{BFM}\)

=> Tam giác BFM cân tại B

=> BF = BM

Xét \(\Delta DBF;\Delta DCN\) có :

\(\widehat{DBF}=\widehat{DCN}\left(slt\right)\\ DB=DC\left(gt\right)\\ \widehat{BDF}=\widehat{CDN}\left(đ^2\right)\\ \Rightarrow\Delta DBF=\Delta DCN\left(g-c-g\right)\\ \Rightarrow BF=CN\\ \Rightarrow BM=CN\)


Các câu hỏi tương tự
Ngọc Ánh Nguyễn
Xem chi tiết
Ngô Minh Hiếu
Xem chi tiết
Minh Trí Bùi
Xem chi tiết
Nguyễn Thị Thư
Xem chi tiết
phạm lan
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
~Alpaca~
Xem chi tiết
~Alpaca~
Xem chi tiết