Câu 4: Cho tam giác ABC vuông tại A(AB < AC) phân giác góc B cắt AC tại D .Kẻ DE vuông góc BC tại E. a/Chứng minh tam giác ABD = tam giác EBD b/Chứng minh BD là đường trung trực của đoạn thẳng AB. c/ Chứng minh: AB + AC > BC + DF
cho tam giác ABC cân tại A,góc A nhọn,các đường trung trực của AB,AC cắt nhau tại O.Vẽ hình.
a,chứng minh AO là tia phân giác của góc A
b,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC chúng cắt nhau tai K
c,kẻ BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H.chứng minh A,O,H,K thẳng hàng
cho tam giác ABC cân tại A,góc A nhọn,các đường trung trực của AB,AC cắt nhau tại O.Vẽ hình.
a,chứng minh AO là tia phân giác của góc A
b,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC chúng cắt nhau tai K.chứng minh AK là tia phân giác của góc A.
c,kẻ BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H.chứng minh A,O,H,K thẳng hàng
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại E Kẻ EH vuông góc với BC ( H Thuộc BC) a, Cho AB = 6 cm BC = 5 cm Tính AC?? b, Chứng Minh AB = BH c, kẻ AM vuông góc với BC tại M. Chứng minh AH là tia phân giác của góc MAC d, gọi K là giao điểm của AM và BE. Chứng minh tam giác AKE là tam giác cân ( Lưu ý : vẽ hình ms 5*)
Cho tam giác ABC có AB < AC. Qua trung điểm K của BC vẽ đường thẳng d vuông góc với tia phân giác của góc A, d cắt AB, AC lần lượt tại H, I.
a) Chứng minh rằng: BH = CI
b) Chứng minh rằng: góc KAB> góc KAC
c) Nếu góc A vuông, gọi M, N lần lượt là trung điểm của AB, AC. Cmr: BN^2 + CM^2 = 5/4 * BC^2
d) Lấy điểm P thay đổi trên AB, điểm Q thay đổi trên AC sao cho BP = CQ. Chứng minh rằng: Đường thẳng đi qua trung điểm và vuông góc với PQ luôn đi qua một điểm cố định.
Cho tam giác ABC vuông tại B. Biết AB=3cm, BC=4cm. Câu a: tính AC. Câu b: kẻ tia phân giác CK ( K thuộc AB ) , kẻ KH vuông góc với AC tại H. Chứng minh tam giác BCK= tam giác HCK. Câu c: Gọi M là giao điểm của đường thẳng HK và CB, chứng minh AK=MK
Cho tam giác ABC vuông tại A .Đường phân giác của góc B cắt AC tại E.Kẻ EH vuông góc với BC (H thuộc BC) . a/ Chứng minh tam giác ABE = tam giác HBE b/ Chứng minh BE là đường trung trực của đoạn thẳng AH. c/ Gọi I là giao điểm của Be và AH .Cho AB = 10 cm, AH = 16 cm và G là trọng tâm của tam giác ABH. Tính BG. d/ Gọi K là giao điểm của AB và EH. Chứng minh tam giác BCK cân.
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE) a, tính góc ABC b, chứng minh tam giac AKE c, AE là đường trung trực của đoạn thẳng Ck d,chứng minh KA bằng KB e, chứng minh tam giác KBE = tam giác DBE
Bài 1. Cho tam giác ABC cân tại A. Gọi I là trung điểm của BCa) Chứng minh AI là tia phân giác góc Ab) Chứng minh AI vuông BCc) Kẻ IH vuông góc với AB (H thuộc AB), kẻ IK vuông góc với AB (K thuộcAC). Chứng minh IH = IK.d) Trên tia đối của tia IA lấy điểm D sao cho IA = ID. Chứng minh AB // CD