cho a,b,c > 0 tìm giá trị nhỏ nhất của 2( a + b + c ) + \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) Khi a2+b2+c2 = 3
1 . Cho a,b,c là các số thực dương. Chứng minh
\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\le\frac{1}{4}\left(a+b+c\right)\)
2 .
Cho a,b là hai số thực dương thỏa mãn: a+b≤1
Tìm giá trị nhỏ nhất của : \(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab\)
Cho 3 số thực dương a, b, c thỏa mãn \(a+b\le c\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Cho a,b,c là các số thực thỏa mãn 0≤a≤b≤c≤1 . Tìm giá trị nhỏ nhất của biểu thức \(A=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
cho 3 số thực không âm a,b,c sao cho a2+b2+c2=1 . cmr \(\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\) (giải chi tiết với ạ !!!!)
Cho ba số thực dương a,b,c thỏa mãn điều kiện \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\) .Tìm giá trị nhỏ nhất của biểu thức \(Q=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
cho a,b,c thỏa mãn a+b+c=0 và a2=2(a+c+1)(a+b-1). tính giá trị A=a2+b2+c2
Cho a,b là các số thực dương thỏa mãn điều kiện a+b\(\le\)2
Tìm giá trị nhỏ nhất của biểu thức: A=\(\frac{1}{a^2+b^2}+\frac{2}{ab}+ab\)