\(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{1}{ab}+\frac{1}{2ab}\)
\(A\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{ab}{ab}}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}\)
\(A\ge\frac{4}{\left(a+b\right)^2}+2+\frac{2}{\left(a+b\right)^2}\ge\frac{4}{2^2}+2+\frac{2}{2^2}=\frac{7}{2}\)
\(A_{min}=\frac{7}{2}\) khi \(a=b=1\)