Lời giải:
Vì \(a,b,c\in [-2;5]\) nên:
\(\left\{\begin{matrix} (a+2)(a-5)\leq 0\\ (b+2)(b-5)\leq 0\\ (c+2)(c-5)\leq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ b^2\leq 3b+10\\ c^2\leq 3c+10\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ 2b^2\leq 6b+20\\ 3c^2\leq 9c+30\end{matrix}\right. \)
Do đó:
\(a^2+2b^2+3c^2\leq 3(a+2b+3c)+60\)
Mà \(a+2b+3c\leq 2\)
\(\Rightarrow a^2+2b^2+3c^2\leq 3.2+60=66\)
Ta có đpcm
Dấu bằng xảy ra khi \((a,b,c)=(-2,5,-2)\)