\(\sin x\cdot\cos x=\left(\sin x+\cos x\right)^2-\sin^2x-\cos^2x=m^2-1\)
\(A=\left|\sin x-\cos x\right|=\sqrt{\left(\sin x+\cos x\right)^2-4\sin x\cos x}\)
\(=\sqrt{m^2-4\cdot\left(m^2-1\right)}=\sqrt{m^2-4m^2+4}=\sqrt{4-3m^2}\)
\(\sin x\cdot\cos x=\left(\sin x+\cos x\right)^2-\sin^2x-\cos^2x=m^2-1\)
\(A=\left|\sin x-\cos x\right|=\sqrt{\left(\sin x+\cos x\right)^2-4\sin x\cos x}\)
\(=\sqrt{m^2-4\cdot\left(m^2-1\right)}=\sqrt{m^2-4m^2+4}=\sqrt{4-3m^2}\)
Chứng minh:
a) \(tan(\frac\pi4+\frac{x}2).\frac{1+cos(\frac\pi2+x)}{sin(\frac\pi2+x)}=1\)
b) \(tan(\frac\pi4+x)=\frac{1+sin2x}{cos2x}\)
c) \(\frac{cosx}{1-sinx}=cot(\frac\pi4-\frac{x}{2})\)
d) \(tanx.tan3x=\frac{tan^22x-tan^2x}{1-tan^2x.tan^22x}\)
Biến đổi thành tích
a/ 2sin4x + \(\sqrt{2}\) b/ 3 _ 4cos2x
c/1-3tan2x d/sin2x + sin 4x +sin 6x
e/ 3+cos4x+cos8x f/sin5x+ sin6x+sin7x+sin8x
g/ 1 + sin2x -cos2x - tan2x h/sin2x ( x+90 ) - 3cos2(x-90)
i/ cos5x+cos8x+cos9x + cos12x k/ cosx + sinx +1
cmr : (16tan2x.cos^4x-8sin2x.cos^2x+4sin2x.tan2x)/2tan2x+4sin2x+sin4x=(2tan2x.cosx-2(1+tanx-tan2x)sinx)/cosx.tan2x
Gọi \(m_a,m_b,m_c\) là các trung tuyến lần lượt ứng với các cạnh a, b, c của tam giác ABC
a) Tính \(m_a\), biết rằng \(a=26,b=18,c=16\)
b) Chứng minh rằng : \(4\left(m^2_a+m^2_b+m^2_c\right)=3\left(a^2+b^2+c^2\right)\)
Giá trị biểu thức C = \(\dfrac{1}{\sin20}+\dfrac{\sqrt{3}}{\cos10}\)
Cho tam giác ABC. Chứng minh tam giác ABC cân nếu \(4\text{m}^2_{\text{a}}=b\left(b+4c.cosA\right)\)
Cho hình bình hành ABCD có AB = a; BC = b; BD = m và AC = n.
Chứng minh rằng : \(m^2+n^2=2\left(a^2+b^2\right)\) ?
4) Cho △ABC. Đẳng thức nào \(Sai\) ?
\(A.\sin\left(A+B-2C\right)=\sin3C\)
\(B.\cos\dfrac{B+C}{2}=\sin\dfrac{A}{2}\)
\(C.\sin\left(A+B\right)=\sin C\)
\(D.\cos\dfrac{A+B+2C}{2}=\sin\dfrac{C}{2}\)
bài 1 cho tam giác ABC có a bằng 3 b bằng 9 góc A bằng 60độ tính c
bài 2 cho tam giác ABCcó AB bằng 8 AC bằng 9 BC bằng 10 M nằm trên BC sao cho bm bằng 7
tính AM