Lời giải:
$x+y=\sin ^4a+\cos ^4a+x(1-\cos 4a)$
$=(\sin ^2a+\cos ^2a)^2-2\sin ^2a\cos ^2a+x[1-(\cos ^22a-\sin ^22a)]$
$=1-2\sin ^2a\cos ^2a+x[1-(1-2\sin ^22a)]$
$=1-2\sin ^2a\cos ^2a+2x\sin ^22a$
$=1-\frac{1}{2}(2\sin a\cos a)^2+2x\sin ^22a$
$=1-\frac{1}{2}\sin ^22a+2x\sin ^22a$
$=1+\sin ^22a(2x-\frac{1}{2})$