\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}=\frac{1}{2}-\frac{\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\)