Giải:
Giả sử \(P\left(x\right)=ax^6+bx^5+cx^4+dx^3+ex^2+fx+g\)
Ta có:
\(P\left(1\right)=P\left(-1\right)\)
\(\Rightarrow a+b+c+d+e+f+g=a-b+c-d+e-f+g\)
\(\Rightarrow b+d+f=0\left(1\right)\)
Tương tự:
\(P\left(2\right)=P\left(-2\right)\)
\(\Rightarrow2^5b+2^3d+2f=-2^5b-2^3d-2f\)
\(\Rightarrow16b+4d+f=0\left(2\right)\)
\(P\left(3\right)=P\left(-3\right)\)
\(\Rightarrow3^5b+3^3d+3f=-3^5b-3^3d-3f\)
\(\Rightarrow3^4b+3^2d+f=0\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\)
Suy ra \(b=d=f=0\)
\(\Rightarrow P\left(x\right)\) là đa thức chỉ có bậc chẵn
Vậy \(P\left(x\right)=P\left(-x\right)\)