Đặt f(x)=0
=>x+1=0 hoặc x-2=0
=>x=-1 hoặc x=2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}g\left(-1\right)=0\\g\left(2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1+a-b-6=0\\8+4a+2b-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=7\\4a+2b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-5\end{matrix}\right.\)
Vậy: \(g\left(x\right)=x^3+2x^2-5x-6\)
g(-3)=-27+18+15-6=0
=>x=-3 là nghiệm của g(x)