\(\Delta'=\left(m-1\right)^2+7m^2=8m^2-2m+1=8\left(m-\frac{1}{8}\right)^2+\frac{7}{8}>0;\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
Theo Viet \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-1\right)}{7}\\x_1x_2=-\frac{m^2}{7}\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\frac{4\left(m-1\right)^2}{49}+\frac{2m^2}{7}=\frac{18m^2-8m+4}{7}\)