\(\Rightarrow x^2-mx-x+m-2=0\) \(\Rightarrow x^{^2}-x\left(m+1\right)+m-2=0\)
\(\)\(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2+2m+1-4m+8=m^2-2m+9=\left(m-1\right)^2+8\ge8>0\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt x1, x2
\(\Rightarrow x^2-mx-x+m-2=0\) \(\Rightarrow x^{^2}-x\left(m+1\right)+m-2=0\)
\(\)\(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2+2m+1-4m+8=m^2-2m+9=\left(m-1\right)^2+8\ge8>0\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt x1, x2
Cho pt: x2 - (m + 2) + 7m - 2m2 - 3 = 0 (với x là ẩn số) (1)
a) Chứng tỏ phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình (1) có hai nghiệm x1 , x2 thỏa hệ thức:
2(x12 - x22) - 5x1x2 = 2
Cho pt x²-2(m+1)+6m-4=0 (1)(với m là tham số)
a, chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để pt (1) có 2 nghiệm x1;x2 thỏa mãn (2m−2)x1+x22−4x2=4
Cho PT : x2- 4x - m=0 với x là ẩn số, m là tham số
A) Chứng tỏ PT luôn có 2 nghiệm phân biệt với mọi giá trị của m
B) Gọi x1, x2 là hai nghiệm của PT
Tìm giá trị m để :
2x1 + x2 ( 2 - 3x1) = 8
Cho \(x^2\)+\(mx-2=0\)
Tìm m để pt có 2 nghiệm phân biệt sao cho \(x1^3-x2^3=9\)
Cho PT : x2 - mx +m -2 =0
a ) Chứng minh PT trên luôn có hai nghiệm phân biệt với mọi giá trị m
b) Định m để hai nghiệm x1 , x2 của PT thỏa mãn \(\frac{x1^{ }^2_{ }-2}{x1-1_{ }_{ }^{ }}.\frac{x2^2-2}{x2-1}\) =4
Cho pt x\(^2\)-2-2(m-1)x-3-m=0Chứng tỏ rằng pt có nghiệm x1,x2 với mọi m tìm m để pt có 2 nghiệm trái dâu tìm m để pt có 2 nghiệm cùng âm tìm m để nghiệm số x1,x2 của pt thỏa mãn x1\(^2\)+x2≥10tìm hệ thứ liên hệ giữa x1,x2 không phụ thuộc vào m hãy biểu thị x1 qua x2
cho pt ẩn x: x^2 -2mx-1=0 (1)
a) chứng minh rằng pt đã cho lun có 2 nghiệm phân biệt x1,x2
Tìm các giá trị của m để x1^2+x2^2-x1x2=7
8.3. Tìm m để pt: x2 - 2(m+4)x + m2 +7 =0 có hai nghiệm phân biệt x1, x2 thỏa mãn: |x1| + |x2| = 12.
8.4. Tìm m để pt: x2 + 2(m+5)x + m2 +6 =0 có hai nghiệm phân biệt x1, x2 thỏa mãn: |x1| + |x2| = 16.
8.5. Cho pt: x2 - 2(m+3)x + m2 +5 =0
a) Giải pt khi m = 2.
b) Tìm m đẻ pt có hai nghiệm phân biệt x1, x2 thỏa mãn: |x1| + |x2| = 10.
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32