Để 2 nghiệm là 2 cạnh của tam giác vuông \(\Rightarrow\) hai nghiệm đều dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-2m>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m>0\end{matrix}\right.\) \(\Rightarrow m>0\)
Theo định lý Pitago:
\(x_1^2+x_2^2=12\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)
\(\Leftrightarrow4\left(m+1\right)^2-4m=12\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\left(l\right)\end{matrix}\right.\)