\(\Delta=b^2-4ac=\left(-2m\right)^2-4\cdot1\cdot\left(-1\right)=4m^2+4m>0\forall m\)
Vậy ptr luôn có 2 nghiệm phân biệt.
Theo định lý Viete, ta có:
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2m\\P=x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)-x_1x_2=7\)
\(\Leftrightarrow S^2-2P-P=7\)
\(\Leftrightarrow4m^2-3\cdot\left(-1\right)-7=0\)
\(\Leftrightarrow4m^2-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)