Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-6\end{matrix}\right.\)
\(E=2x_1^2x_2+2x_1x_2^2\\ =2x_1x_2\left(x_1+x_2\right)\\ =2.\left(-6\right).7\\ =-84\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-6\end{matrix}\right.\)
\(E=2x_1^2x_2+2x_1x_2^2\\ =2x_1x_2\left(x_1+x_2\right)\\ =2.\left(-6\right).7\\ =-84\)
1) Cho pt \(3x^2+5x-6=0\) có 2 nghiệm \(x_1,x_2\) (không giải pt)
Tính giá trị biểu thức \(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\)
2) Cho pt \(3x^2-5x-3=0\) có nghiệm \(x_1,x_2\) ( không giải pt)
Tính giá trị biểu thức \(B=x^3_1.x_2+x_1.x^3_2\)
1) cho pt \(3x^2-10x+2=0\) (không giải pt)
tính giá trị biểu thức \(A=\dfrac{x_1-1}{x_2}+\dfrac{x_2-1}{x_1}-x_1^2.x^2_2\)
1) Cho pt \(5x^2-7x+1=0\)
a) C minh pt có 2 nghiệm phân biệt \(x_1,x_2\)
b) Tính giá trị biểu thức \(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x^2_2}+x^2_2\)
2) Cho pt \(x^2-4+1-2m=0\) (x là ẩn số)
a) tìm m để pt có nghiệm
b) tìm m để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x^2_2=6\)
1. Cho pt \(3x^2+4x+1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
2. . Cho pt \(3x^2-5x-1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(D=\dfrac{x_1-x_2}{x_1}+\dfrac{x_2-1}{x_2}\)
3. . Cho pt \(3x^2-7x-1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(B=\dfrac{2x^2_2}{x_1+x_2}+2x_1\)
Cho phương trình \(x^2-4x-6=0\). Không giải phương trình, tính giá trị của biểu thức sau (\(x_1,x_2\) là hai nghiệm của phương trình):
\(A=x^2_1+x^2_2;\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
\(C=x^3_1+x^3_2\)
\(D=\left|x_1-x_2\right|\)
Cho PT \(x^2-2x+m-1=0\). Tìm m để PT có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x^2_1+x^2_2-3x_1x_2=2m^2+\left|m-3\right|\)
Cho phương trình : \(x^2-mx+m-1=0\)
a) CMR : PT luôn có 2 nghiệm với mọi m
b) Tính giá trị P =\(\frac{2x_1.x_2+3}{x^2_1+x^2_2+2\left(x_1.x_2+1\right)}\)theo m
c) Tìm GTLN , GTNN của P.
cho pt \(x^2-4x+1-2m=0\) (x là ẩn số )
a) tìm m để pt có nghiệm
b) tìm x để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x_2^2=6\)
Cho PT: \(x^2-mx-2=0\). Tìm m để PT có 2 nghiệm phân biệt thỏa mãn:
\(x_1^2.x_2+x_1x^2_2+7>x_2^1+x_2^2+\left(x_1+x_2\right)^2\)