\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1+x_2\right)=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2=\dfrac{9}{x_1-x_2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\\x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=0\end{matrix}\right.\)
=> \(x_1;x_2\) là hai nghiệm của pt \(x^2-3x=0\)
Theo giả thiết \(x_1;x_2\) là hai nghiệm của pt \(x^2+ax+b+1=0\)
\(\Rightarrow x^2-3x=x^2+ax+\left(b+1\right)\)
Đồng nhất hệ số=> \(\left\{{}\begin{matrix}a=-3\\b+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3=a\\-1=b\end{matrix}\right.\)
Vậy...