Để pt cho có 2 nghiệm thì \(\Delta=m^2-4n\ge0\Leftrightarrow m^2\ge4n\) (*)
Theo Vi - et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n\end{matrix}\right.\)
Ta khai thác dữ kiện : \(x_1^3-x_2^3=7\)
\(\Rightarrow\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=7\)
\(\Rightarrow x_1^2+x_1x_2+x_2^2=7\) (1)
\(\Rightarrow\left(x_1-x_2\right)^2+3x_1x_2=7\)
\(\Rightarrow3n=7-1=6\Rightarrow n=2\)
Ta lại có từ (1) suy ra :
\(\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Rightarrow m^2=7+x_1x_2=7+n=7+2=9\)
\(\Rightarrow m=\pm3\)
Thử lại ta thấy các giá trị đều thỏa mãn (*)
Vậy \(\left(m,n\right)=\left(-3,2\right);\left(3,2\right)\)