\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m\end{matrix}\right.\)
\(A=\frac{\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)+6}{x_1x_2}\)
\(A=\frac{4\left(m+1\right)^2-2m-6\left(m+1\right)+6}{m}=\frac{4m^2+4}{m}\)
\(A=\frac{4m^2+4-8m}{m}+8=\frac{4\left(m-1\right)^2}{m}+8\ge8\)
\(A_{min}=8\) khi \(m=1\)