\(\Delta=\left(m-2\right)^2\ge0;\forall m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\frac{4x_1x_2+6}{x_1^2+x_2^2+2x_1x_2+2}=\frac{4x_1x_2+6}{\left(x_1+x_2\right)^2+2}=\frac{4\left(m-1\right)+6}{m^2+2}\)
\(A=\frac{4m+2}{m^2+2}=\frac{m^2+4m+4-\left(m^2+2\right)}{m^2+2}=\frac{\left(m+2\right)^2}{m^2+2}-1\ge-1\)
\(A_{min}=-1\) khi \(m=-2\)