Bài 6: Hệ thức Vi-et và ứng dụng

quangduy

Cho phương trình \(x^2+\left(m-1\right)x-m^2-2=0\) (1) với m là tham số thực.

a) Chứng minh: phương trình (1) luôn có 2 nghiệm trái dấu \(x_1,x_2\) với mọi giá trị của m

b) Tìm m để biểu thức \(T=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất

Akai Haruma
18 tháng 4 2018 lúc 17:07

Lời giải:

a)

Vì \(\Delta=(m-1)^2+4(m^2+2)>0, \forall m\in\mathbb{R}\) nên pt luôn có hai nghiệm phân biệt với mọi $m$

Áp đụng định lý Viete cho pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=1-m\\ x_1x_2=-(m^2+2)\end{matrix}\right.(*)\)

Vì \(m^2\geq 0, \forall m\in\mathbb{R}\Rightarrow m^2+2>0\Rightarrow -(m^2+2)< 0\)

\(\Leftrightarrow x_1x_2< 0\).

Do đó pt luôn có hai nghiệm trái dấu (đpcm)

b)

Sử dụng hằng đẳng thức và $(*)$ để biến đổi:

\(T=\left(\frac{x_1}{x_2}\right)^3+\left(\frac{x_2}{x_1}\right)^3=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-3.\frac{x_1}{x_2}.\frac{x_2}{x_1}\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)

\(T=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-3\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)

Đặt \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=t\Rightarrow T=t^3-3t\)

Có: \(t=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{(x_1+x_2)^2}{x_1x_2}-2=\frac{(1-m)^2}{-(m^2+3)}-2\)

Vì \((1-m)^2\geq 0; -(m^2+3)< 0\Rightarrow t=\frac{(1-m)^2}{-(m^2+3)}-2\leq 0-2=-2\)

Khi đó:

\(T=t^3-3t=t(t^2-4)+t=t(t-2)(t+2)+t\)

Vì \(t\leq -2\Rightarrow \left\{\begin{matrix} t(t-2)(t+2)\leq 0\\ t\leq -2\end{matrix}\right.\Rightarrow T\leq -2\)

Vậy \(T_{\max}=-2\). Dấu bằng xảy ra khi \(t=-2\Leftrightarrow \frac{(1-m)^2}{-(m^2+3)}-2=-2\Leftrightarrow m=1\)

Bình luận (0)

Các câu hỏi tương tự
Lê Hoàng Anh
Xem chi tiết
sky12
Xem chi tiết
KYAN Gaming
Xem chi tiết
KYAN Gaming
Xem chi tiết
Thanh Linh
Xem chi tiết
Limited Edition
Xem chi tiết
illumina
Xem chi tiết
Bánh Mì
Xem chi tiết
Hải Yến Lê
Xem chi tiết