\(a-b+c=4-m^2-2m+15+m^2+2m+1-20=0\)
\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x=-1\\x=\frac{20-\left(m+1\right)^2}{4}\end{matrix}\right.\)
Nếu \(x_2=-1\Rightarrow x_1^2+2018=0\Rightarrow x_1^2=-2018< 0\) (vô lý)
\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=\frac{20-\left(m+1\right)^2}{4}\end{matrix}\right.\)
\(\Rightarrow\left(-1\right)^2+\frac{20-\left(m+1\right)^2}{4}+2019=0\)
\(\Leftrightarrow8100=\left(m+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=90\\m+1=-90\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=89\\m=-91\end{matrix}\right.\)