Áp dụng Viét có: `{(x_1+x_2=-b/a=-9/2),(x_1.x_2=c/a=-3):}`
Ta có:`B=4(x_1 ^2+x_2 ^2)+5x_1.x_2`
`<=>B=4(x_1+x_2)^2-8x_1.x_2+5x_1.x_2`
`<=>B=4(-9/2)^2-3.(-3)`
`<=>B=90`
Áp dụng Viét có: `{(x_1+x_2=-b/a=-9/2),(x_1.x_2=c/a=-3):}`
Ta có:`B=4(x_1 ^2+x_2 ^2)+5x_1.x_2`
`<=>B=4(x_1+x_2)^2-8x_1.x_2+5x_1.x_2`
`<=>B=4(-9/2)^2-3.(-3)`
`<=>B=90`
Câu 1:
Cho phương trình: 2x2 + 5x - 8 = 0
a) Chứng tỏ phương trình luôn có hai nghiệm phân biệt x1, x2.
b) Không giải phương trình, hãy tính giá trị biểu thức: \(A=\dfrac{2}{x_1}+\dfrac{2}{x_2}.\)
Câu 2:
Cho biểu thức \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}\) (với a ≥ 0; a ≠ 4).
a) Rút gọn biểu thức P.
b) Tính \(\sqrt{P}\) tại a thỏa mãn điều kiện a2 - 7a + 12 = 0.
Câu 3:
a) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{3}{2}\\3x-2y=5\end{matrix}\right.\)
b) Xác định hệ số a và b của hàm số y = ax + b biết đồ thị của nó là đường thẳng (d) song song với đường thẳng y = x + 2 và chắn trên hai trục tọa độ một tam giác có diện tích bằng 2.
Câu 4:
Cho đường tròn (O; R), đường kính AD. B là điểm chính giữa của nửa đường tròn, C là điểm trên cung AD không chứa điểm B (C khác A và D) sao cho tam giác ABC nhọn.
a) Chứng minh tam giác ABD vuông cân.
b) Kẻ AM ⊥ BC, BN ⊥ AC. Chứng minh tứ giác ABMN nội tiếp. Xác định tâm I đường tròn ngoại tiếp tứ giác ABMN.
c) Chứng minh điểm O thuộc đường tròn (I).
Cho phương trình x2 + 5x − 4 = 0 . Gọi x1 ; x2 là hai nghiệm của phương trình. Không giải phương trinh, hăy tính giá trị biểu thức
Q = x12 + x22 + 6x1 x 2.
Cho phương trình 5x2 - 2x - 7 = 0. a) Không giải phương trình, tính tổng và tích hai nghiệm. b) Tính giá trị của biểu thức A = x12 + x22 – x1. x2
CHo pt x-4x-3=0 có 2 nghiệm phân biệt x1,x2 không giải phương trình hãy tính giá trị của biểu thức A=\(\dfrac{x1^2}{x2}+\dfrac{x2^2}{x1}\)
Cho phương trình x2 - mx + m - 4 = 0 (x là ẩn ). Chứng minh rằng phương trình có hai nghiệm x1,x2 với mọi m. Tìm tất cả các giá trị nguyên dương của m để (5x1 - 1)(5x2 - 1 ) < 0
cho phương trình x2=2mx-1=0 có hai nghiệm là x1 và x2.Tìm các giá trị của m để:
x1+2x2=0
3x2+4x-7=0 A/ chứng tỏ phương trình có 2 nghiệm phân biệt B/ không giải phương trình, hay tính giá trị của biếu thức 2x1-(x1-x2-x1x2(
Cho phương trình: 2x2 + (2m-1)x +m - 1 = 0 trong đó m là tham số. Tìm m để phương trình trên có 2 nghiệm thỏa mãn: 4x12 + 4x22 + 2x1x2 = 1
Cho phương trình x2 - 2(m + 1) + m2 + 1 = 0, với m là tham số. Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 (x1<x2) thoả mãn :
(2x2 - 3)2 - (2x2 - 3)2 = 32m - 16