a,Điều kiện: \(3n+2\ne0\Rightarrow n\ne\dfrac{-2}{3}\)
Ta có:\(A=\dfrac{6n-3}{3n+2}=\dfrac{6n+4-7}{3n+2}=2-\dfrac{7}{3n+2}\)
Do 2 nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{3n+2}\) nguyên => 3n+2 là ước của 7 \(\Rightarrow3n+2\in\left\{\pm1;\pm7\right\}\)
+) Với 3n+2=1 => 3n=-1 => \(n=-\dfrac{1}{3}\) (ko thỏa mãn)
+) Với 3n+2=-1 => 3n=-3 => n=-1 (thỏa mãn)
+) Với 3n+2=7 => 3n=5 => n=3/5 (ko thỏa mãn)
+) Với 3n+2=-7 => 3m=-9 => n=-3 (thỏa mãn)
Vậy \(n\in\left\{-1;-3\right\}\)
b, Do \(A=2-\dfrac{7}{3n+2}\) => để A đạt GTNN thì \(\dfrac{7}{3n+2}\) lớn nhất. Vì 7 dương nên để \(\dfrac{7}{3n+2}\) lớn nhất thì 3n+2 phải có giá trị dương nhỏ nhất.
Mà \(n\in Z\) => n=0
Với n=0 thì \(A=2-\dfrac{7}{3.0+2}=2-3,5=-1,5\)
Vậy minA=-1,5 khi n=2