Phương trình hoành độ giao điểm (P) và (d):
\(x^2=mx+1\Leftrightarrow x^2-mx-1=0\) (1)
\(ac=-1< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) ở 2 phía của Oy
Không mất tính tổng quát, giả sử 2 nghiệm của (1) là \(x_A< 0< x_B\)
Gọi C và D lần lượt là hình chiếu vuông góc của A và B lên Ox
\(\Rightarrow x_C=x_A;x_D=x_B\)
\(S_{OAB}=S_{ABDC}-\left(S_{OAC}+S_{OBD}\right)\)
\(=\dfrac{1}{2}\left(x_B-x_A\right)\left(y_A+y_B\right)-\dfrac{1}{2}\left(y_A.\left(-x_A\right)+y_B.x_B\right)\)
\(=\dfrac{1}{2}\left(x_B-x_A\right)\left[m\left(x_A+x_B\right)+2\right]-\dfrac{1}{2}\left(x_B\left(mx_B+1\right)-x_A\left(mx_A+1\right)\right)\)
\(=\dfrac{1}{2}\left(x_B-x_A\right)=2\Rightarrow x_B-x_A=4\)
Kết hợp hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=m\\x_B-x_A=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=\dfrac{m+4}{2}\\x_A=\dfrac{m-4}{2}\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{m+4}{2}\right)\left(\dfrac{m-4}{2}\right)=-1\Leftrightarrow m^2-16=-4\)
\(\Rightarrow m=\pm2\sqrt{3}\)