Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
a.viết pt đường thẳng (d) biết đường thẳng (d) đi qua điểm N(2;3) và song song với đường thẳng y=2x-5
b.tìm tọa độ giao điểm của đồ thị hàm số y=x\(^2\) và y=2x+3
c.gọi \(x_1;x_2\) là nghiệm của phương trình x\(^2\)+2x-5=0. tính A=\(\left(x_1-x_2\right)^2+x_1x_2\)
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
Cho 2 đường thẳng (d1):y=x+1 và (d2):y=-x+3
A, Gọi M là giao điểm của (d1),(d2).Tìm toạ độ giao điểm M (bằng phép toán )
B, Viết phương trình đường thẳng (y=ax+b). Biết rằng đường thẳng này có tung độ góc bằng 2 và cắt trục hoành tại điểm có hoành độ bằng -4
C, Cho đường thẳng (d3):y=(2m+1)x+n+1 ( với m ≠ -1/2). Với giá trị nào của m và n thì đường thẳng (d3)và (d2) trùng nhau.
1, Giải phương trình :\(2x^4+x^2-6=0\)
2, Cho parabol (P) :\(y=x^2\) và đường thẳng (d) : y=mx+2
a, Với m=-1 : vẽ parabol (P) và đường thẳng (d) trên cùng 1 hệ trục tọa độ .Tìm tọa độ các giao điểm của parabol (P) và đường thẳng (d)
b, Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1;x_2\) sao cho \(x_1-2x_2=5\)
Giải hộ mình câu c thôi nhoa!
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\)
a) Tìm tọa độ giao điểm của (d) và (P) với m=-1
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn: \(x_1^2+x_2^2+4x_1x_2=36\)
c) Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
cho Parabol \(y=\frac{1}{2}x^2\) (P) và đường thẳng \(y=mx+2\)(d). Gọi x1,x2 lần lượt là hoành độ giao điểm của (d) và (P) tìm m để \(\left|x_1\right|=4\left|x_2\right|\)
Trong mặt phẳng tọa độ Oxy , cho đường thẳng (d)y=mx+5
a) Chứng minh rằng đường thẳng (d) luôn đi qua điểm A(0;5) với mọi m
b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P):y=x^2 tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) ( với \(x_1< x_2\) ) sao cho \(\left|x_1\right|>\left|x_2\right|\)
Cho parabol (P): \(y=\frac{1}{2}x^2\) và đường thẳng (d): \(y=mx-\frac{1}{2}m^2+\frac{1}{2}\) (m là tham số)
Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2:
a) \(x_1-2x_2=0\)
b) \(x_1;x_2>1\)