Theo đề, ta có:
\(\left\{{}\begin{matrix}13a+b=2015\\4a+b=783\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1232}{9}\left(loại\right)\\b=\dfrac{2119}{9}\left(loại\right)\end{matrix}\right.\)(Vì a,b là các số nguyên)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Theo đề, ta có:
\(\left\{{}\begin{matrix}13a+b=2015\\4a+b=783\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1232}{9}\left(loại\right)\\b=\dfrac{2119}{9}\left(loại\right)\end{matrix}\right.\)(Vì a,b là các số nguyên)
cho f(x) = ax+b trong đó a,b thuộc Z
Chứng minh rằng không thể đồng thời có f(17)=71 và f(12)=35
a) Cho 3 số a;b;c thỏa mãn \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)
Tính giá trị của biểu thức B = 4(a-b)(b-c)-(c-a)2
b) Cho đa thức f(x) = a4x4+a3x3+a2x2+a1x+a0. Biết rằng f(1) =f(-1) và f(2)=f(-2). Chứng minh rằng f(x)=f(-x) với mọi x
c) Tìm các số nguyên dương x;y;z thỏa mãn \(\dfrac{x}{7}+\dfrac{y}{11}+\dfrac{z}{13}=\dfrac{946053}{999999}\)
a ) Chứng minh rằng A = ax2 +bx +c ( a , b , c \(\in\) Z ) \(⋮\) 3 với \(\forall\) x \(\in\) Z thòi a , b , c đều chia hết cho 3
b ) Cho x - y = 2 . Tính giá trị nhỏ nhất của Q = x2 + y2 - xy
Câu 1:Tìm 2 số x và y,biết:
a, x/3 =y/7 và x+y = 20 b,x/5 = y/2 và x-y = 6
Câu 2:Tìm x trong các tỉ lệ thức sau:
a, x/7 = 18/14 ; b, 6:x =1 và 3/4 :5; c, 5.7 :0.35+(-x) :0.45
Câu 3:Tìm các số x,y,z biết :
x/2 = y/4 = z/6 và x-y+z = 8
Câu 4:Chứng minh rằng từ tỉ lệ thức a/b = c/d (a hk thuộc b,c hk thuộc d) ta có thể suy ra tỉ lệ thức a+b/a-b = c+d/c-d
Cho Q(x) = ax2+bx+c (a;b;c \(\in\) Z )
Biết Q(x) chia hết ch0 2014 với mọi x \(\in Z\)
Chứng minh rằng : 3a + 5b +7c chia hết cho 1007
Thầy phynit và các bạn ơi có thể giải giúp cho em bài toán này được không ạ. Tối nay em cần rồi.....
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC ( h thuộc BC ). Gọi M là trung điểm của BH. Trên tia đối của tia AM lấy điểm N sao cho MN= MA.
a) Chứng minh rằng : tam giác AMH = tam giác NMB và NB vuông góc với BC.
b) Chứng minh rằng AH = NB từ đó suy ra NB< AB
c) Chứng minh rằng Góc BAM < MAH.
d) gọi I là trung điểm của NC. Chứng minh rằng : Ba điểm A, H, I thẳng hàng
a ) Tìm x \(\in\) Z và x < 30 để A = \(\frac{\sqrt{x}-3}{2}\) có giá trị nguyên
b ) Cho a = 3n+1 + 3n - 1 , b = 2 . 3 n+1 - 3n + 1 trong đó n \(\in\) N . Chứng minh rằng ít nhất 1 trong 2 số không chia hết cho 7
Cho f(x)=ax3+bx2+cx+d ( a,b,c,d thuộc Z)
Biết f(x)chia hết cho 5 với mọi giá trị x thuộc Z.
Chứng minh rằng: a, b, c, d chia hết cho 5.
Cho các số hữu tỉ x=a/b; y=c/d; z= a+c/b+d
Chứng minh rằng nếu x < y thì x < z < y
Áp dụng: Viết ba số hữu tỉ xen giữa hai số hữ tie -1/2 và -1/3