1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
Tìm số nguyên tố P sao cho 2P+1 là một số lập phương
Cho x, y, z là các số hữu tỉ khác 0 thoả mãn x+y=z
Cmr: \(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\) là một số hữu tỉ.
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. Tìm các số hữu tỉ a, b, c để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
tìm các số nguyên tố p để \(\sqrt{1+p+p^2+p^3+p^4}\)là số hữu tỉ
Cho a,b,c là một số hữu tỉ và đôi một khác nhau chứng minh
A=\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ
Cho x và y là các số hữu tỉ thoa mãn đẳng thức \(\left(x+y\right)^3=xy\left(3x+3y+2\right)\)
Chứng minh rằng \(\sqrt{1-xy}\) là một số hữu tỉ