a: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó: ΔABC vuông tại C
a: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó: ΔABC vuông tại C
Cho đường tròn (O), đường kính AB = 2R. Lấy điểm C thuộc (O) sao cho CA = R. Từ A vẽ đường thẳng vuông góc với AB cắt BC tại M.
a) Tính số đo góc B và độ dài AM theo R.
b) Gọi E là trung điểm AM. Chứng minh OE ⊥ AC.
c) Gọi I là trung điểm của đường cao CH của △ABC. Chứng minh ba điểm B, I, E thẳng hàng.
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính AC nó cắt cạnh AB ,BC theo thứ tự ở H và K
a)Chứng minh CH vuông góc AB, AK vuông góc AC
b) gọi I là giao điểm của AK và CH chứng minh BI vuông góc AC
Cho (O ; R ) dây BC khác đường kính . Hai tiếp tuyến của ( O ; R ) tại BC cắt nhau tại A . Kẻ đường kính CD ; kẻ BH vuông góc với CD tại H
a, CMR : 4 điểm A ; B ; O ; C cùng thuộc 1 đường tròn
b, Gọi K là giao điểm của AO và BC . CMR : AO vuông góc với BC
c , CMR : BC là tia phân giác của |ABH
d, gọi I là giao điểm của AD và BH ; E là giao điểm của BD và AC . CMR : IH = IB
1. Cho tam giác ABC, góc A = 90 độ, có AB = 5 cm, AC = 12 cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
2. Cho hình thang cân ABCD (AD//BC). Biết AB = 12 cm, AC = 16 cm và BC = 20 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Cho tam giác ABC cân tại A, nội tiếp dduwwongf tròn (O). Đường cao AH cắt đường tròn ở D
a) Vì sao AD là đường kính của đường tròn (O) ?
b) Tính số đo góc ACD
c) Cho BC = 24 cm, AC = 20 cm. Tính đường cao AH và bán kính đường tròn (O)
Bài 5: Cho đường tròn(O;R), dây BC cố định. A chuyển động trên cung lớn BC. Gọi H là trung điểm của AB. Chứng minh H thuộc một đường tròn cố định
Bài 8: Cho đường tròn (O;R) và dây AB cố định. Điểm C chuyển động trên cung lớn AB. Gọi G là trọng tâm của tam giác ABC. Chứng minh G thuộc một đường tròn cố định
Bài 10: Cho đường tròn (O;R), đường kính AB cố định. Điểm M chuyển động trên đường tròn. Lấy N đối xứng với M qua A. Chứng minh N thuộc một đường tròn cố định.
cho đường tròn (O) đường kính A.Trên đường tròn lấy điểm C sao cho AC<BC (C khác A).các tiếp tuyến tại B và C của đương tròn tâm O cắt nhau ở điểm D.AD cắt đường tròn tâm O tại E (E khác A).DO cắt BC tại F
a) Chứng minh BC vuông góc OD
b) chứng minh DF.DO=DE.DA
Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E
a) Chứng minh rằng \(CD\perp AB,BE\perp AC\)
b) Gọi K là giao điểm của BE, CD. Chứng minh rằng AK vuông góc với BC
cho tam giác ABC nội tiếp đường tròn (O), từ B vẽ đường vuông góc AB tại B cắt (O) tại D
a) Chứng tỏ AD là đường kính của (O)
b) Tính góc ACD
c) Gọi H là trực tâm tam giác ABC, tứ giác BHCD là hình gì? Vì sao ?