Cho (O;R), đường kính AB. Trên các bán kính OA, OB lấy M và N sao cho OM = ON. Qua M và N lần lượt vẽ dây CD và EF song song với nhau (C và E cùng nằm trên một nửa đường tròn đường kính AB).
a) CMR: CDFE là hcn
b) Cho OM = \(\dfrac{2}{3}\)R, góc nhọn giữa CD và OA = 60o. Tính SCDFE
Trong 1 đường tròn tâm O, cho 2 dây AB và CD song song với nhau. Biết AB=30cm; CD=40cm; khoảng cách giữa AB và CD là 35cm. Tính bán kính đường tròn
Cho nửa đường tròn (O) đường kính AB. Trên các bán kính OA và OB lần lượt lấy các điểm E và F sao cho OE=OF. Từ E và F vẽ hai đường thẳng song song với nhau cắt nửa đường tròn tại C, D. Cho AB=10cm, CD=6cm. Tính \(S_{CDFE}\)
2) Cho đường tròn (O), 2 dây AB và CD song song với nhau, biết AB=30cm; CD=40cm. Khoảng cách giữa 2 dây là 35cm, tính bán kính đường tròn (O)
Cho đường tròn tâm O, hai dây AB và CD vuông góc với nhau ở M. Biết AB = 18 cm, CD = 14 cm, MD =4 cm. Hãy tính: a) Bán kính của đường tròn (O). b) Khoảng cách từ tâm O đến mỗi dây AB và CD;
Cho đường tròn (O;R) đường kính AB. Gọi M là 1 điểm nằm giữa A và B. Qua M vẽ dây CD vuông góc với AB. lấy điểm E đối xừng với A qua M.
a) Tứ giác ACDE là hình gì? Vì sao?
b) Giả sử R=6,5cm, MA=4cm. Tính CD
c) Gọi H và K lần lượt là hình chiếu của M trên CA và CB. chứng minh: MH.MK=\(\dfrac{MC^3}{2R}\)
Cho đường tròn (O), các bán kính OA, OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng :
a) OC là tia phân giác của góc AOB
b) OC vuông góc với AB
Cho đường tròn tâm O bán kính 25cm, dây AB bằng 40 cm. Vẽ dây CD song song với AB và có khoảng cách đến AB bằng 22 cm. Tính độ dài dây CD
Trong 1 đường tròn tâm O bán kính 25cm, 2 dây AB và CD song song với nhau. Biết AB=40cm, CD=48cm. Tính khoảng cách giữa 2 dây ấy.