Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Ngọc Tuyết Nung

cho niểu thức A=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{2x\sqrt{x-1}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)a) rút gọn A

b) tính giá trị của A khi x=17-12\(\sqrt{2}\)

c)So sánh A với \(\sqrt{4}\)

Nguyễn Lê Phước Thịnh
15 tháng 11 2022 lúc 21:02

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(2x+\sqrt{x}-1\right)\cdot\left(\dfrac{1}{1-x}+\dfrac{\sqrt{x}}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\cdot\dfrac{1+x\sqrt{x}+\sqrt{x}-x\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\dfrac{\left(2\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\cdot\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: Khi x=17-12 căn 2 thì \(A=\dfrac{17-12\sqrt{2}+3-2\sqrt{2}+1}{3-2\sqrt{2}}=7\)


Các câu hỏi tương tự
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Phượng Hoàng
Xem chi tiết
Phượng Hoàng
Xem chi tiết
KYAN Gaming
Xem chi tiết
KYAN Gaming
Xem chi tiết
nguyen ngoc son
Xem chi tiết
KYAN Gaming
Xem chi tiết
Tuyết Linh Linh
Xem chi tiết
Võ Thùy Trang
Xem chi tiết