Ta có: \(n^2< n^2+1< n^2+2n+1\Rightarrow n^2< n^2+1< \left(n+1\right)^2\)
\(\Rightarrow n< \sqrt{n^2+1}< n+1\Rightarrow n\le\left[\sqrt{n^2+1}\right]< n+1\)
\(\Rightarrow\left[\sqrt{n^2+1}\right]=n\)
Vậy \(\left[\sqrt{1}\right]+\left[\sqrt{1^2+1}\right]+...+\left[\sqrt{n^2+1}\right]=1+1+2+...+n=1+\dfrac{n\left(n+1\right)}{2}\)