cho a,b,c là các số dương thỏa mãn: a+b+c=1
cmr :\(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)
Cho các số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\)
Tìm GTNN của biểu thức \(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)
BT1: Cho a,b,c>0. CMR: a2(b+c-a)+b2(c+a-b)+c2(a+b-c)=<3abc
BT2: Cho a,b,c>0. CMR\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}>=a+b+c\)
BT3: Cho a,b,c>0 thỏa mãn: abc=ab+bc+ca. Chứng minh:
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}=< \dfrac{3}{16}\)
GIÚP MÌNH VỚI. MÌNH ĐANG CẦN GẤP.
CMR: \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}}< 2\)
Cho a, b, c là 3 cạnh 1 tam giác, p là nửa chu vi tam giác.
CMR : \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho x,y >0 thỏa mãn x+y=1
Tìm GTNN của A =\(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)\)
Cho a, b,c là 3 cạnh của 1 tam giác.
CMR: a) \(\dfrac{a}{b+c+a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\)
b) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\) là độ dài 3 cạnh của 1 tam giác.
Tìm GTNN của biểu thức sau:
\(N=\dfrac{3x}{2}+\dfrac{1}{x+1}\) với \(x>-1\)
Tìm GTLN của biểu thức:
\(Q=\left(6x+3\right)\left(5-2x\right)\) với\(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)
Giải BPT giùm mình với các bạn , thực sự mình cần rất gấp ạ !
1) \(\dfrac{2x+1}{2}+3>=\dfrac{3-5x}{3}-\dfrac{4x-1}{4}\)
2) \(\dfrac{5x-3}{5}+\dfrac{2x+1}{4}< =\dfrac{2-3x}{2}-5\)
*Chú thích : < = là bé hơn hoặc bằng
> = là lớn hơn hoặc bằng.