1. Cho tam giác ABC có 3 trung tuyến là AM, BN, CP. Chứng minh rằng
a) \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC tìm điểm M thỏa mãn:
a) \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{BC}\)
cho điểm M bất kì trong mặt phẳng gọi \(\overrightarrow{MN}\) được xác định \(\overrightarrow{MN}=\overrightarrow{MA}-2\overrightarrow{MB}\). chứng minh rằng MN luôn đi qua 1 điểm cố định
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
1. Cho tam giác ABC . Các điểm M,N thỏa mãn : \(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\)
a. Tìm điểm I sao cho \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{O}\)
b. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định
c.gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố định
1. Gọi I, J lần lượt là trung điểm của 2 đoạn thẳng AB và CD. Chứng minh rằng: \(2\overrightarrow{IJ}\) =\(\overrightarrow{AC}\) + \(\overrightarrow{BD}\) = \(\overrightarrow{AD}\) + \(\overrightarrow{BC}\)
2. Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: \(\overrightarrow{AM}\) + \(\overrightarrow{BN}\) + \(\overrightarrow{CD}\) = \(\overrightarrow{O}\)
Bài 1: Cho 4 điểm A B C D. Chứng minh nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) thì \(\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 2: CMR nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì \(\overrightarrow{AC}=\overrightarrow{BC}\)
Bài 3: Cho tam giác ABC. Lần lượt vẽ các điểm M N P thỏa mãn \(\overrightarrow{AM}=\overrightarrow{BA},\overrightarrow{BN}=\overrightarrow{CB},\overrightarrow{CP}=\overrightarrow{AC}\). Gọi I là một điểm bất kì, chứng minh \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\)\(\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
Cho hình thang OABC . M,N lần lượt là trung điểm của OB và OC . Chứng minh rằng:
a. \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
b. \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{OC}-\overrightarrow{OB}\)
c. \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{OC}-\overrightarrow{OB}\right)\)
1.Cho △ABC. Gọi M;N lần lượt là trung điểm AB và BC. Đặt\(\overrightarrow{CM}=\overrightarrow{a};\overrightarrow{AN}=\overrightarrow{b}\).Biểu diễn các véc tơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\) theo \(\overrightarrow{a};\overrightarrow{b}\)
2.Cho △ABC.Trên đường thẳng AB lấy điểm M sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\).Hãy phân tích véc tơ \(\overrightarrow{CM}\)theo hai véc tơ \(\overrightarrow{u}=\overrightarrow{CA};\overrightarrow{v}=\overrightarrow{CB}\)
3. Cho △ABC. Gọi M;N;P lần lượt trên cách cạnh AB;BC;CA của △ABC sao cho MB =2MA;NC=2NB;PA=2PC.CMR : \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
cho tam giác ABC với 3 trung tuyến AM,BN ,CP. Chứng minh \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)