Chứng minh
a) \(sin^4x=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
b) \(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)
Câu 1 : chứng minh rằng : \(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}=tan2a\)
Câu 2 : chứng minh : \(cos^2\left(\alpha-\frac{\pi}{4}\right)-sin^2\left(\alpha-\frac{\pi}{4}\right)=sin2\alpha\)
chứng minh rằng: \(\frac{sin\left(a-b\right)}{cosa.cosb}+\frac{sin\left(b-c\right)}{cosb.cosc}=\frac{sin\left(a-c\right)}{cosa.cosc}\)
Chứng minh|
a) \(\frac{1+sin2x}{sinx+cosx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=sinx\)
b) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
Cho biểu thức
\(F\left(x\right)=sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{27\pi}{2}-x\right)+sin\left(3\pi+x\right)-cos\left(7\pi-x\right)\)
a) Rút gọn F(x)
b) Trong hệ trục tọa độ Oxy gắn với đường tròn lượng giác, hãy nêu cách tìm số đo của góc x để F(x)=-1
Nếu biết \(\frac{sin^4a}{a}+\frac{cos^4a}{b}=\frac{1}{a+b}\) thì biểu thức \(M=\frac{sin^{10}a}{a^4}+\frac{cos^{10}a}{b^4}\) bằng
A. \(\frac{1}{\left(a+b\right)^5}\)
B. \(\frac{1}{a^5}+\frac{1}{b^5}\)
C. \(\frac{1}{a^4}+\frac{1}{b^4}\)
D. \(\frac{1}{\left(a+b\right)^4}\)
Cho \(sin\left(x-y\right)=\frac{1}{2}\). Chứng minh: \(1-\sin^2x-\sin^2y+2\sin x.\sin y.\cos\left(x-y\right)=\frac{3}{4}\)
1/ Biểu thức: (nêu cách làm)
A = có kết quả thu gọn bằng: A.\(-\sin\alpha\) B.\(\sin\alpha\) C.\(-\cos\alpha\) D. \(\cos\alpha\) \(\cos\left(\alpha+26\pi\right)-2\sin\left(\alpha-7\pi\right)-\cot1,5\pi-\cos\left(\alpha+\frac{2003\pi}{2}\right)+\cos\left(\alpha-1,5\pi\right).\cot\left(\alpha-8\pi\right)\)
Cho: cosa, cosb ≠ 0, chứng minh đẳng thức: \(\frac{\sin\left(a+b\right).\sin\left(a-b\right)}{\cos^2a.\cos^2b}=\tan^2a-\tan^2b\)