Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh BCEF và CDHE là các tứ giác nội tiếp.
b) Chứng minh EB là tia phân giác của góc FED và tam giác BFE đồng dạng vói tam giác DHE.
c) Giao điểm của AD với đường tròn (O) là I (I khác A), IE cắt đường tròn (O) tại K (K khác I). Gọi M là trung điểm của đoạn thằng EF. Chứng minh rằng ba điểm B, M, K thẳng hàng.
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.Cho tam giác ABC nội tiếp (O) đường kính BC có AB > AC , hai tiếp tuyến tại A và B cắt nhau tại M .
1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn và xác định tâm I của đường tròn này.
2) Chứng minh : .
3) Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp
Cho tam giác ABC nội tiếp đường tròn O. Phân giác của A cắt đường tròn ở P. Đường cao AH cắt BC ở H .
a. Chứng minh OP song song với AH
b. Chứng minh AP là phân giác của góc OAH
Làm cụ thể ra nhé
Cho tam giác nhọn ABC nội tiếp đường tròn (O) . Các đường cao BD, CE ( D thuộc AC, E thuộc AB ) cắt nhau tại H . Đường thẳng DE cắt đường thẳng BC tại G .
1) Chứng minh tứ giác BCDE là tứ giác nội tiếp được trong đường tròn .
2) Chứng minh : GB . GC = GE . GD .
3) Đường thẳng AG cắt đường tròn (O) tại điểm M . Chứng minh : góc MAB = góc MDG .
Mình cần câu 3 thôi ạ (k cần giải chi tiết, chỉ cần nêu ý)
cho tam giác abc nội tiếp đường tròn tâm O. BE,CF là 2 đường cao H là trực tâm AD là đường kính H cắt đường tròn tâm O tại P. Chứng minh PD song song BC, BAP=CAD
Cho tam giác MPQ có 3 góc đều nhọn nội tiếp trong đường tròn (O) . Hai đường cao MI và QK cắt nhau tại H , đường cao MI cắt đường tròn (O) ngoại tiếp tam giác MQP tại N . Vẽ đường kính ME . Chứng minh :
a) QH=QN
b) Tứ giác PNEQ là hình thang cân
c) HE đi qua trung điểm F của QP
Cho tam giác ABC có 3 góc nhọn (AB<BC,AC) nội tiếp (O). Kẻ các đường cao BD,CE cắt nhau tại H (D thuộc AC, E thuộc AB)
a, Chứng minh BCDE là tứ giác nội tiếp
b, Chứng minh DA.DC= DH.DB
c, Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần lượt tại M,N. Chứng minh OA vuông góc với MN.
d, Các tiếp tuyến tại M,N của (H,HA) cắt nhau tại P. Chứng minh AP đi qua trung điểm của BC.