Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Tính A=(a+b)(b+c)(c+a) + 9
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) và \(a+b+c=3abc\). Chứng minh \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
CMR \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{a^3+b^3+c^3}\)
Cho\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Chứng minh:\(\dfrac{1}{a^3+b^3+c^3}=\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)
bài 1:
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) .Chứng minh rằng:
\(\dfrac{1}{a^{1995}}+\dfrac{1}{b^{1995}}+\dfrac{1}{c^{1995}}=\dfrac{1}{a^{1995}+b^{1995}+c^{1995}}\)
Cho 3 số a , b , c khác 0 thỏa mãn : \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}=\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\)
Chứng minh rằng : a=b=c
Bài 1: Cho \(\text{a+b+c=ab+bc+ac=abc}\) \(\ne\) \(0\) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Tính \(A=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 2: Cho \(a,b,c\ne0\). CMR nếu \(x,y\) thỏa mãn :
\(\dfrac{a}{c}x+\dfrac{b}{c}y=\dfrac{b}{a}x+\dfrac{c}{a}y=\dfrac{c}{b}x+\dfrac{a}{b}y=1\)
thì \(\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=3\)
Bài 3: Cho \(ax+by+cz=0\) và \(a+b+c=\dfrac{1}{2019}\)
Tính \(A=\dfrac{a^2x^2+b^2y^2+c^2z^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Cho a,b,c đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) . Rút gọn
N=\(\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}\)
M=\(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
Cho a, b, c khác 0: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính M = \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)