\(log\frac{1}{64}=log2^{-6}=-6log2=-6log\left(\frac{10}{5}\right)=-6log10+6log5\)
\(=-6+6a=6\left(a-1\right)\)
\(log\frac{1}{64}=log2^{-6}=-6log2=-6log\left(\frac{10}{5}\right)=-6log10+6log5\)
\(=-6+6a=6\left(a-1\right)\)
Gọi a,b là hai nghiệm của phương trình \(2^x-x^2=0\) thoả mản \(0< a< b\) . Và giả sử nghiệm x của phương trình \(4\log\left(x\right)-\ln x=\log4\) Có dạng \(x=2^{c.\log_{\frac{e^d}{10}}\left(e\right)}\) . Khi này tính \(P=\left(\log_{a+d}\left(b+c\right)^{10!}+\log_{\frac{\left(a+b+c\right)}{d}}\left(d-a\right)-2\log_{b+c-a}\left(d-b+a+c\right)\right)!\)
a) \(P=10!.\log_b\left(\frac{a+c}{d}\right)\)
b) \(P=10!.\log_{10!}\left(\frac{a-b}{c-d}\right)\)
c) \(P=10!.\log_{\frac{a.c}{b}}\left(d-b+a\right)\)
d) \(P=10!.\log_{\frac{a+b+c}{a.c}}\left(d-c+2a-b-1\right)+1\)
Biết x1, x2 là hai nghiệm của phương trình: log7\(\left(\dfrac{4x^2-4x+1}{2x}\right)+4x^2+1=6x\) và x1 +2x2 = \(\dfrac{1}{4}\left(a+\sqrt{b}\right)\) với a, b là hai số nguyên dương. Tính a +b
Tìm số tự nhiên n bé nhất sau cho :
a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)
b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)
c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)
d) \(\left(1+\dfrac{5}{100}\right)^n\ge2\)
Giải các phương trình sau :
a) \(9^x-3^x-6=0\)
b) \(e^{2x}-3e^x-4+12e^{-x}=0\)
c) \(3.4^x+\dfrac{1}{3}.9^{x+2}=6.4^{x+1}-\dfrac{1}{2}.9^{x+1}\)
d) \(2^{x^{ }-1}-3^{x^2}=3^{x^2-1}-2^{x^2+2}\)
Cho \(\log_ab=3;\log_ac=-2\). Hãy tính \(\log_ax\) với :
a) \(x=a^3b^2\sqrt{c}\)
b) \(x=\dfrac{a^4\sqrt[3]{b}}{c^3}\)
Cho ΔABC CÓ AB=AC VẼ TIA PHÂN GIÁC CỦA ∠A CẮT BC TẠI D. GỌI M LÀ 1 ĐIỂM NẰM GIỮA A VÀ D. CMR:
a, ΔAMB = Δ AMC
b, Δ MBD= ΔMCD
Bài 1:
A) Cho a-5b chia hết cho 17. Chứng minh: ab chia hết cho 17
B) Cho dcba chia hết cho 4 . Chứng minh: a+2b chia hết cho 4
Biết phương trình log5\(\dfrac{2\sqrt{x}+1}{x}\) = 2.log3\(\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\) có một nghiệm dạng x= a + b\(\sqrt{2}\) trong đó a,b là các số nguyên. Tính 2a+b
Giải các bất phương trình :
a) \(2^{2x-1}+2^{2x-2}+2^{2x-3}\ge448\)
b) \(\left(0,4\right)^x-\left(2,5\right)^{x+1}>1,5\)
c) \(\log_3\left[\log_{\dfrac{1}{2}}\left(x^2-1\right)\right]< 1\)
d) \(\log^2_{0,2}x-5\log_{0,2}x< -6\)