Bài 7: Ôn tập chương Hàm số lũy thừa, hàm số mũ và hàm số lôgarit

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Tìm số tự nhiên n bé nhất sau cho :

a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)

b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)

c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)

d) \(\left(1+\dfrac{5}{100}\right)^n\ge2\)

Mới vô
22 tháng 4 2017 lúc 15:56

a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)\(\Leftrightarrow2^{-n}\le10^{-9}\)\(\Leftrightarrow-n\le log^{10^{-9}}_2\)\(\Leftrightarrow-n\le-9log^{10}_2\)\(\Leftrightarrow n\ge9log^{10}_2\)\(\Leftrightarrow n\ge30\).
Vậy \(n=30\).

 

b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)

\(\Leftrightarrow-\left(\dfrac{7}{5}\right)^n\le-3\)

\(\Leftrightarrow\left(\dfrac{7}{5}\right)^n\ge3\)\(\Leftrightarrow n\ge log^3_{\dfrac{7}{5}}\)

\(\Rightarrow\)\(n\in\left\{4;5;6;7;...\right\}\Rightarrow n=4\)

c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)

\(\Leftrightarrow-\left(\dfrac{4}{5}\right)^n\ge-0,3\)

\(\Leftrightarrow\left(\dfrac{4}{5}\right)^n\le0,3\)\(\Leftrightarrow n\ge log^{0,3}_{\dfrac{4}{5}}\)

\(\Rightarrow n\in\left\{6;7;8;9...\right\}\Rightarrow n=6\)

d)\(\left(1+\dfrac{5}{100}\right)^n\ge2\)

\(\Leftrightarrow1,05^n\ge2\)

\(\Rightarrow n\in\left\{15;16;17;18;...\right\}\Rightarrow n=15\)

Mới vô
22 tháng 4 2017 lúc 17:03

em mới lp 6 k biết trình bày kiểu lp 12


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết