Đặt \(\left\{{}\begin{matrix}x+y+z=p=3\\xy+yz+zx=q\\xyz=r\end{matrix}\right.\) \(\Rightarrow q\le\frac{1}{3}\left(x+y+z\right)^2=3\Rightarrow0\le q\le3\)
Theo BĐT Schur: \(r\ge\frac{p\left(4q-p^2\right)}{9}=\frac{4q-9}{3}\)
\(VT=p^2-2q+r=9-2q+r\ge9-2q+\frac{4q-9}{3}=4+\frac{2\left(3-q\right)}{3}\ge4\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)