a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: AB=AC
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: AB=AC
Cho tam giác ABC vuông tại A. BI là tia phân giác của góc ABC (I thuộc AC). Kẻ ID vuông góc với BC tại D.
a) Chứng minh rằng .
b) Chứng minh cân và BI là đường trung trực của đoạn thẳng AD.
c) Kéo dài DI cắt đường thẳng BA tại E. Chứng minh ID < IE và IE = IC.
d) Tam giác ABC cần có thêm điều kiện gì để điểm I cách đều ba đỉnh của tam giác BEC.
cho tam giác ABC có CA=CB=10cm , AB=12cm.kẻ CI vuông góc AB(I thuộc AB) kẻ IH vuông góc AC ( H thuộc AC) ,IK vuông góc BC ( k thuộc BC )
a/ chứng minh rằng IA=IB
b/ chứng minh rằng IH=IK
c/tính độ dài IC
d/ chứng minh rằng HK//AB
cho tam giác ABC có CA=CB=10cm , AB=12cm.kẻ CI vuông góc AB(I thuộc AB) kẻ IH vuông góc AC ( H thuộc AC) ,IK vuông góc BC ( k thuộc BC )
a/ chứng minh rằng IA=IB
b/ chứng minh rằng IH=IK
Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: Tam giác HAK cân
b) Chứng minh rằng: BH = CK.
c) Tính độ dài các đoạn thẳng AH và BH, biết AB = 9cm, AC = 12cm.
Cho tam giác ABC ( AB=AC). Đường trung trực của đoạn BC tai H cắt tia phân giác Ax của góc A tại K. Kẻ KE, KF theo thứ tự vuông góc với AB và AC
a) Chứng minh rằng BE = CF
b) Nối EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE = BD. Đường vuông góc với BC kẻ từ D cắt BA tại M. Đường vuông góc với BC kẻ từ E cắt AC tại N. MN cắt BC tại I.
a) Chứng minh rằng DM = EN
b) Chứng minh IM = IN; BC < MN.
c) Gọi O là giao điểm của đường phân giác của góc A với MN tại I. Chứng minh rằng .
Cho tam giác ABC cân tại A, gọi M, N lần lượt là trung điểm của AB, AC. Các đường trung trực của AB, AC cắt nhau tại O. a) Chứng minh AD là phân giác của góc BAC. b) Chứng minh tam giác OBC cân c) Chứng minh MN // BC. d) Chứng minh AO vuông góc với MN.
Bài 3:Cho tam giác ABCcó ba góc nhọn, AB < AC. Qua trung điểm Dcủa cạnh BC kẻđường thẳng vuông góc với tia phân giác của góc BACcắt các đường thẳng ABvà AClần lượt tại Hvà K. a) Chứng minh rằng: HAKcân.b) Chứng minh rằng: BH = CK.c) Tính độdài các đoạn thẳng AHvà BH, biết AB= 9cm, AC= 12cm.