Qua đỉnh của hình vuông ABCD có cạnh dài dài \(\sqrt{5}\)cm, vẽ một đường thẳng cắt cạnh BC tại điểm M và cắt đường thẳng DC tại điểm N.
Tính tổng \(\frac{1}{AM^2}+\frac{1}{AN^2}\)
1. cho tam giác ABC vuông cân tại A, đường cao AH= 2cm. Tính độ dài mỗi cạnh A
2. cho hình vuông ABC D, qua A vẽ đường thẳng cách cạnh BC vad cắt đường thẳng DC lần lượt tại E và F. Vẽ đường thẳng Ax vuông góc AF cắt đường thẳng DC tại G. ch/m:
a, ΔADG = ΔABE
b, \(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)
Cho hình chữ nhật ABCD có AB=mAD (m>0) . Qua A kẻ đường thẳng cắt đoạn BC và đường thẳng DC lần lượt tại M,N .CMR:
\(\dfrac{m^2}{AB^2}=\dfrac{m^2}{AM^2}+\dfrac{1}{AN^2}\)
Cho hình chữ nhật ABCD có AB=mAD (m>0) . Qua A kẻ đường thẳng cắt đoạn BC và đường thẳng DC lần lượt tại M,N .CMR:
\(\dfrac{m^2}{AB^2}=\dfrac{m^2}{AM^2}+\dfrac{1}{AN^2}\)
Cho hình vuông ABCD. Đường thẳng đi qua A cắt cạnh BC tại M, cắt đường thẳng DC tại N. Chứng minh rằng: 1/DC2=1/AN2+1/AM2 (vẽ thêm hình nhé)
1. Cho hthang vuông ABCD qua D kẻ 1 đường thẳng bất kì cắt các cạnh BC, AB (hoặc đường thẳng chứa các cạnh đó) tại K và I C/m \(\frac{1}{DI^2}+\frac{1}{DK^2}=\frac{1}{AD^2}\)
mau nha
Cho hình vuông ABCD và I thuộc AB:DI cắt BC tại E.Đường thẳng qua D vuông góc với DE cắt BC tại F
a,Tam giác DIF là Tam giác gì?
b) CMR: \(\frac{1}{DE^2}\)+\(\frac{1}{DI^2}\)=\(\frac{1}{DC^2}\)
Cho hình chữ nhật ABCD có AB=2AD. Gọi E là điểm bất kì trên cạnh BC. Gọi F là giao điểm của đường thẳng AE và DC. Qua A vẽ đường thẳng vuông góc với AE cắt CD tại M.
a/ Chứng minh rằng \(\frac{4}{AB^2}=\frac{4}{AE^2}+\frac{1}{AF^2}\)
b/ Kẻ DN⊥AM (điểm N thuộc AM). Đặt \(\widehat{AMD}=\alpha\). Chứng minh \(MN=MF\times\cos^3\alpha\)
Cho hình chữ nhật ABCD, AB = 2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Cmr: \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)