Cho hinh thang ABCD (AB//CD).Biết AB=4cm ,CD=4cm.Trên cạnh AD lấy các điểm E,F,G sao cho AE=EF=FG.Từ các điểm E,F,G kẻ các đường thằng song song vs đáy cắt BC theo thứ tự N,M,K,Tính EM,FN,GK
Cho tam giác ABC , đường trung tuyến AM.Qua điểm D thuộc cạnh BC,vẽ đường thẳng song song với AM,cắt AB và AC theo thứ tự ở E và F
a, Chứng minh rằng khi điểm D chuyển động trên cạnh BC thì tổng DE+DF có giá trị không đổi
b, Qua A vẽ đường thẳng song song với BC,cắt EF ở K.Chứng minh rằng K là trung điểm của EF
Bài 1: Cho hình bình hành ABCD. Trên BD lấy điểm E, gọi F là điểm đối xứng với C qua E. Qua F, kẻ Fx song song với AD, Fy song song với AB; Fx cắt AB tại I, Fy cắt AD tại K. Chứng minh rằng: I, K, E thẳng hàng
Bài 2: Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng AK song song với BC. Qua B kẻ đường thảng BI song song với AB. BI cắt AC ở F, AK cắt BD ở E. Chứng minh rằng:
a) EF // AB;
b) AB^2 = CD. EF
Bài 3: Cho hình bình hành ABCD, điểm E thuộc cạnh AB, điểm F thuộc cạnh AD. Đường thẳng qua D và song song với EF cắt AC ở I. Đường thẳng qua B và song song với EF cắt AC ở K. Chứng minh rằng:
a) AI = CK
b) AB/AE + AD/AF = AC/AN ( N là giao điểm của EF và AC)
Bài 4: Cho hình bình hành AABCD. Đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng:
a) DM2 = MN.MK
b) DM/DN + DM/DK = 1
Bài 5: Cho hình thoi ABCD. Qua C kẻ đường thẳng d cắt các tia đối của các tia BA, CA theo thứ tự ở E và F. Chứng minh rằng:
a) EM/AB = AD/DF
b) EBD đồng dạng với BDF;
c) Góc BID bằng 120 độ ( I là giao điểm của DE và BF)
Bài 6: Cho cân tại A có BC = 2a. M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho
CMR: Tích BD.CE không đổi
CMR: DM là phân giác của góc
Tính chu vi của AED nếu ABC đều
Bài 7: Cho ( AB khác AC) Gọi E và F theo thứ tự là các hình chiếu của B và C trên tia phân giác của góc A. Gọi K là giao điểm của các đường thẳng FB và CE. Chứng minh rằng: AK là tia phân giác của góc ngoài tại đỉnh A của
Bài 8: Cho hình thang ABCD( AB //CD). M là trung điểm của cạnh CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC
a) Chứng minh rằng: IK//AB
b) Đường thẳng IK cắt AD và BC theo thứ tự ở E và F. Chứng minh IE = IK = KF
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
Cho tứ giác ABCD, O là giao điểm của hai đường chéo AC và BD. Đường thẳng song song với BC qua O, cắt AB ở E và đường thẳng song song với CD qua O, cắt AD ở F
a) EF// BD
b) Từ O vẽ các đường thẳng song song với AB và AD, cắt BC và DC lần lượt tại G và H. Chứng minh hệ thức: CG. DH= BG. CH
Cho hình thang ABCD ( AB // CD ) . Các đường chéo cắt nhau ở O . Đường thẳng a qua O // với đáy của hình thang và cắt các cạnh bên AD , BC theo thứ tự E và F . Chứng minh rằng :
a) \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{EF}\)
b) Đường thẳng b // với đây cắt 2 cạnh bên và cắt 2 đường chéo của hình thang lần lượt là M ; N ; H ; K . Chứng minh : MH = MK
AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO
Cho hình thang ABCD, AB//CD và AB<CD. Qua A Vẽ đường thẳng AK//BC (K∈CD). Qua B vẽ đường thẳng BI//AD(I∈CD). BI cắt AC tại F, AK cắt BD ở E. Chứng minh rằng : a)AB//EF. b)AB2=EF.DC.
Cho hình thang ABCD (AB // CD), E là trung điểm của AD, F là trung điểm của BC. Đường thằng EF cắt BD ở I, cắt AC ở K.
a) Chứng minh rằng AK = KC, BI = ID.
b) Cho AB = 6cm, CD = 10cm. Tính các độ dài EI, KF, IK.
Cho hình thang ABCD ( AB // CD ) . Các đường chéo cắt nhau ở O . Đường thẳng a qua O // với đáy của hình thang và cắt các cạnh bên AD , BC theo thứ tự E và F . Chứng minh rằng :
a) \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{EF}\)
b) Đường thẳng b // với đây cắt 2 cạnh bên và cắt 2 đường chéo của hình thang lần lượt là M ; N ; H ; K . Chứng minh : MH = MK
AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO!!!