Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho tam giác ABC có góc A nhọn. Gọi M là trung điểm của AB. Trên tia đối của tia BC lấy điểm O sao cho BO=\(\dfrac{1}{2}\)BC. Đường thẳng OM cắt AC tại N. CMR: AN=\(\dfrac{1}{4}\)AC
Cho tam giác ABC, M là 1 điểm nằm trên cạnh BC thỏa mãn: \(BM=\dfrac{1}{3}BC\); lấy I thuộc đoạn AM sao cho \(AI=\dfrac{1}{3}AM\). Tia BI cắt cạnh AC tại D. Tính tỉ số \(\dfrac{AD}{AC}\)
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD
2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR
a) DM2=MN. MK
b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1
3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1
4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ
5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
bài 1: a) |x-1|=|3x-5|
b) x|x+3|-|x2+x+1|=1
Bài 2: Chứng minh:
a) \(\dfrac{x-x^2+1}{x-x^{2-1}}< 1\)
b) a2+b2+1> hoặc = ab+a+b
Bài 3: Cho hình bình hành ABCD, AB = 8cm, AD= 6cm. Trên BC lấy điểm M sao cho BM=4cm. Đường thẳng AM cắt BD tại I và cắt đường thẳng DC tại N
a) Tính \(\dfrac{IB}{ID}\)
b) Chứng minh: Tam giác AMB đồng dạng tam giác NAD
c) Tính DN và CN
d) Chứng minh: IA2=IM.IN
Cho hình chữ nhật ABCD, kẻ BH vuông góc với AC tại H. Trên AH lấy điểm M và trên AC lấy điểm N sao cho: \(\dfrac{AM}{AH}=\dfrac{DN}{DC}\). CMR: \(MN\perp BM\)