Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho hình chữ nhật ABCD. Gọi K, L tương ứng là trung điểm các cạnh BC và DA. Trên cạnh CD kéo dài về phía D lấy điểm M bất kì, đường thẳng ML cắt AC tại N. CMR: \(\dfrac{KM}{KN}=\dfrac{ML}{LN}\)
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
Giúp mk với ạ.
1: Cho số thực x đk: \(0\le x\le1\)
Tim min và max của:
\(A=\dfrac{x^2}{2-x^2}+\dfrac{1-x^2}{1+x^2}\)
2: Cho hình vuông ABCD có M là trung điểm của DC, trên cạnh BC là 2 điểm H và K sao cho BH = HK = KC, AM cắt BD tại N. CMR:
a, \(\Delta ANH\) vuông cân tại N.
b, AC đi qua trung điểm của NK.
Cho tam giác ABC có 3 góc nhọn đường cao AH. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho HA là tia phân giác của góc MHN. CM: 3 đường BM, CN,AH đồng quy
Cho Hình vuông ABCD ,trên AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF.Vẽ AH vuông góc với BF (H∈BF),AH cắt DC và BC lần lượt tại 2 điểm M,N
a) CMR tứ giác AEMD là hình chữ nhật
b) Biết diện tích △BCH gấp 4 lần diện tích △ AEH.CMR AC=2EF
c) CMR: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)