$a)$ Theo giả thiết ta có:
$AB//CM \Rightarrow \dfrac{AB}{CM}=\dfrac{EB}{EC}(1)$
$BN//CD \Rightarrow \dfrac{BN}{CD}=\dfrac{EB}{EC}(1)$
Từ $(1)$ và $(2)$, suy ra $\dfrac{AB}{CM}=\dfrac{BN}{CD}(3)$
Mặt khác, $AB=BC=CD$ nên từ $(3)$, suy ra $\dfrac{BC}{CM}=\dfrac{BN}{CB}$
Xét $\Delta NBC$ và $\Delta BCM$ có:
$\widehat{B}=\widehat{C}=90^0$
$\dfrac{BC}{CM}=\dfrac{BN}{CB}$ nên $\Delta NBC ~ \Delta BCM (c-g-c)$
$b)$ Theo câu $a)$ ta có: $\Delta NBC ~ \Delta BCM \Rightarrow \widehat{BCN}=\widehat{BMC}$ (so le trong)
Gọi $O$ là giao điểm của $BM$ và $CN$
Xét $\Delta OCM$ có: $\widehat{M}+\widehat{MCO}=\widehat{BCN}+\widehat{MCO}=90^0$
Suy ra: $BM \bot CN$