cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db
cho tam giác abc vuông tại a (ab<ac).vẽ ah vuông góc với bc tại h.
a/chứng minh tam giác HAC đồng dạng tam giác ABC
b/giả sử AB=15cm,AC=20cm.tính độ dài các cạnh AH
c/vẽ tia phân giác của góc BAH cắt cạnh BH tại D.chứng minh BD/HD=BC/AC.
giải giúp mình với ạ.
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
Cho tam giác ABC vuông tại A. Kẻ đường cao AH a/ chứng minh: tam giác ABC đồng dạng với tam giác ABH b/ chưng minh: tam giác ABH đồng dạng với tam giác ACH c/ tính BC, AH, AD, HC. Biết AB = 6cm, AC = 8cm
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB
Cho tam giác ABC vuông tại A ,BI là đường phân giác (I thuộc AC ) . Kẻ CH vuông góc với đường thẳng BI (H thuộc BI)
a) Chứng minh tam giác ABI đồng dạng với tam giác HCI
b) chứng minh tam giác BHC đồng dạng với tam giác CHI
c)Cho biết AB=6cm , AC=8cm . Tính độ dài các cạnh AI , IC
Cho tam giác ABC có ba góc nhọn . Đường cao AF , BE cắt nhau tại H . Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC . Tia Ax và By cắt nhau tại K .
a) Chứng minh : tam giác HAE đồng dạng với tam giác HBF.
b) Chứng minh : CE.CA=CF.CB.
c) Chứng minh góc CFE bằng góc CAB.
d) Nếu tam gics ABC cân tại C, chứng minh rằng ba điểm C, H, K thẳng hàng,
Cho Tam giác ABC vuông tại A, có AB=12cm ; AC=16cm. Kẻ đường cao AH (H∈BC).
a) Chứng minh: Tam giác HBA đồng dạng với Tam giác ABC
b)Chứng minh: \(AB^2\)=HB.BC, tính HB
c)Trên cạnh AC lấy điểm D, trên nửa mặt phẳng bờ BC không chứa điểm A xác định điểm E sao cho CDBE là hình bình hành, qua B kẻ đường vuông góc với tia CE tại F. Chứng minh rằng:CD.CA+BD.CF=\(BC^2\)