Cho hình vuông ABCD. Vẽ một đường thẳng bất kì qua A cắt cạnh BC, tia CD lần lượt tại E, F. Chứng minh rằng: 1/AE2 + 1/AF2 = 1/AD2
Cho hình thang vuông ABCD và điểm M thuộc cạnh BC. Kéo dài AM cắt tia CD tại N. Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E.
a) Chứng minh: AE = AN
b) Chứng minh: 1/AB2 = 1/AM2 + 1/AN2
Cho hình chữ nhật ABCD có \(AB=\dfrac{3}{2}AD\). Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho MN vuông góc với AE. Đường phân giác của góc DAE cắt CD tại P. Chứng minh rằng: \(MN=\dfrac{2}{3}BD+DP\)
Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=150^o\). Lấy điểm E thuộc cạnh BC sao cho \(\widehat{BAE}=30^o\).Tia AE cắt đường thẳng CD tại F. Chứng minh rằng: \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{4}{a^2}\)
Cho hình vuông ABCD kẻ đường thẳng qua A cắt BC tại E và đường thẳng CD tại F
Chứng minh
\(\dfrac{1}{AB^2}+\dfrac{1}{AE^2}=\dfrac{1}{AF^2}\)
Cho hình chữ nhật ABCD, AB=2BC.TRên cạnh BC lấy điểm E, tia AE cắt CD tại F, vẽ AK\(\perp\)AF(K\(\in\)CD):
CMR:\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)
1. cho tam giác ABC vuông cân tại A, đường cao AH= 2cm. Tính độ dài mỗi cạnh A
2. cho hình vuông ABC D, qua A vẽ đường thẳng cách cạnh BC vad cắt đường thẳng DC lần lượt tại E và F. Vẽ đường thẳng Ax vuông góc AF cắt đường thẳng DC tại G. ch/m:
a, ΔADG = ΔABE
b, \(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)
Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất.
Cho hình thoi ABCD ,cạnh a và góc A =120 độ .Qua A vẽ 1 đường thẳng tạo với AB một góc 15 độ . Đường thẳng này cắt cạnh BC ở E và cắt đường thẳng CD ở F. Chứng minh rằng : \(\dfrac{4}{3AB^2}\) =\(\dfrac{1}{AE^2}\)+\(\dfrac{1}{AF^2}\)